Варистор
Варистор
Обозначение, параметры и применение варисторов
Все, кто сталкивался с радиоэлектронной аппаратурой, наверняка обратили внимание, что название большинства электронных компонентов заканчивается на «стор». Резистор, транзистор, тиристор, стабистор.Рассмотрим ещё один компонент электронных схем. Он называется варистор и представляет собой резистор, сопротивление которого меняется в зависимости от величины подаваемого напряжения.
Varistor (Variable Resistor) так и переводится – изменяющееся сопротивление. А вот так варистор обозначается на принципиальных схемах.
Английская буква U рядом с наклонной чертой указывает на то, что сопротивление электронного компонента зависит от напряжения. На схемах варистор обычно маркируется двумя буквами RU, а после них ставиться порядковый номер варистора в схеме (1, 2, 3…).
Варистор является полупроводниковым прибором, изготовленным из порошка карбида кремния (SiC) или окиси цинка (ZnO) методом прессования. У варистора симметричная и нелинейная вольт-амперная характеристика, поэтому он может применяться в цепях постоянного и переменного тока. Варисторы обладают крайне полезным для электрических цепей качеством. Они способны резко менять своё сопротивление при превышении напряжением определённого порога срабатывания.
В случае возникновения импульса напряжения способного вывести из строя электронное устройство, варистор практически мгновенно изменяет своё сопротивление от сотен МОм до десятков Ом, то есть закорачивает цепь питания, поэтому перед варистором всегда ставится обычный плавкий предохранитель.
Раньше для таких защитных целей ставились газонаполненные разрядники, но их быстродействие и надёжность не идут ни в какое сравнение с параметрами варисторов. Например, дисковый варистор без выводов и впаиваемый непосредственно в печатную плату имеет время срабатывания не превышающее нескольких наносекунд.
Варистор подключается параллельно цепи питания. При отсутствии опасных импульсов напряжения ток, протекающий через варистор, имеет небольшую величину, и варистор представляет собой диэлектрик и абсолютно не влияет на работу схемы. Если возник импульс перенапряжения, варистор из-за нелинейности характеристики уменьшает своё сопротивление практически до нуля. Нагрузка шунтируется, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после «срезания» импульса он мгновенно снова приобретает очень большое сопротивление.
Параметры варисторов.
Основные параметры варисторов:- Классификационное напряжение варистора (Varistor Voltage). Это величина напряжения, при котором через варистор протекает ток величиной 1 mA. Этот параметр не является рабочим и скорее является условным. При подборе варистора следует обращать внимание на параметры, о которых речь пойдёт далее;
- Максимально допустимое переменное напряжение (Maximum Allowable Voltage — ACrms). Для варисторов указывается среднеквадратичное значение переменного напряжения (rms). Это величина переменного напряжения, при котором варистор "срабатывает" и начинает пропускать через себя ток, выполняя свои защитные функции;
- Максимально допустимое постоянное напряжение (Maximum Allowable Voltage — DC). Тоже, что и максимально допустимое переменное напряжение но для постоянного тока. Как правило, величина этого параметра больше, чем для переменного тока. Указывается также в вольтах (V);
- Максимальное напряжение ограничения (Maximum Clamping Voltage). Это максимальное напряжение, которое способен выдержать варистор без повреждения. Как правило оговаривается для конкретной величины протекающего через варистор тока. При превышении напряжения ограничения варистор выходит из строя. Корпус варистора при этом растрескивается надвое или вовсе разлетается на куски.
- Максимальная поглощаемая энергия в джоулях (Дж). Это величина максимальной энергии импульса, которую может рассеять варистор в виде тепла без угрозы разрушения самого варистора;
- Время срабатывания — время, за которое варистор переходит из высокоомного состояния в низкоомное при превышении максимально допустимого напряжения. Для широко распространённых варисторов это значение составляет несколько десятков наносекунд (нс). Например, 25 нс.
- Допустимое отклонение (Varistor Voltage Tolerance) — допустимое отклонение квалификационного напряжения варистора. Указывается в процентах — %. Может быть ±5%, ±10%, ±20% и т.д. В маркировке импортных варисторов значение допуска зашифровывается в маркировку варистора буквой. Например, для варисторов фирмы Joyin принято такое обозначение: K — ±10%, L — ±15%, M — ±20%, P — ±25%. Таким образом, для варистора типа JVR-07N391K — отклонение составляет не более ±10%.
Применение варисторов.
Для обычной сети 220 вольт устанавливают защитные варисторы с напряжением срабатывания 275 – 420 вольт. Вот пример надёжно защищённого сетевого фильтра.Этот сетевой фильтр защищают три варистора. То есть надёжно блокируется проникновение импульса не только по фазовой цепи, но и по цепи нуля. Варистор RU1 стоит между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой и землёй и между нулём и землёй. Очень часто бывает ситуация когда на целой улице у всех пользователей вышла из строя вся электронная бытовая аппаратура. О таких случаях были даже телепередачи, когда тысячи человек не могли разобраться на кого писать заявление в суд.
А всё дело в том, что на линии электроснабжения, питающей допустим улицу или микрорайон, вместо фазы и нуля по обоим проводам пошла фаза. Это почти верная смерть для незащищённой бытовой аппаратуры. То есть между проводами N и PE, если всё нормально, напряжения быть не должно. В случае появления фазы на проводе N варистор RU2 благополучно зашунтирует защищаемый блок. Это один из примеров использования варисторов в цепях питания бытовой электронной аппаратуры.
Миниатюрные многослойные варисторы уже давно используются в схемах мобильных телефонов и защищают их от статического электричества. Так же варисторы используются для надёжной защиты компьютерных разъёмов и выводов микропроцессоров от той же статики. Варисторы активно применяются в автомобильной электронике и телекоммуникационном оборудовании.
Варисторы можно встретить во входных цепях блоков питания. Вот фото варистора 391KD14 на плате резервируемого блока питания.
А здесь варистор FNR-14K391 установлен в схему охранного прибора "Гранит" для защиты его блока питания от всплесков напряжения в электросети 220V.
Обнаружить варистор можно и на платах электронного балласта для люминесцентных ламп. На фото показан варистор MYG-10K471, установленный в схему электронного пуско-регулирующего аппарата (ЭПРА) для четырёх линейных люминесцентных ламп. На плате он обозначен как RU.
Варисторы для защиты бытовой электроники обычно выпускаются в виде диска с двумя выводами. Чем больше диаметр диска, тем более мощный импульс напряжения способен погасить варистор. Мощность импульса или энергию, которую способен "погасить" варистор обычно измеряют в джоулях (Дж).
Вот, например, несколько варисторов. Значение диаметра варистора в миллиметрах, как правило, вводится в маркировку самого варистора, например, JVR-07N391K (диаметр — 7 мм.).
Диаметр самого большого варистора типа MYG-14K391, изображённого на фотографии — 14 мм. (~70 Дж), чуть поменьше варистор MYG-10K471 — 10 мм. (~45 Дж), а маленького JVR-07N391K — 7 мм. (~30 Дж).
В скобках указана величина энергии поглощения в джоулях (Дж). Как видим, варистор, обладающий самым большим диаметром в 14 мм. способен погасить энергию опасного импульса в 70 джоулей, в то время как самый маленький варистор диаметром 7 мм. способен погасить всего лишь 30 джоулей. Таким образом, по величине диаметра варистора можно косвенно судить о его максимальной энергии поглощения. Понятно, что в электронные схемы предпочтительнее устанавливать варисторы, рассчитанные на большую энергию поглощения. Также рекомендуется устанавливать в схему по два одинаковых варистора, включенных параллельно.
Также существуют варисторы и для SMD монтажа. По внешнему виду они напоминают SMD диоды и поэтому их достаточно сложно отличить.
К варисторам отечественного производства относятся изделия марки СН2-1А, СН1-2-1, ВР-4В и др.
Конечно, у варисторов имеются недостатки, но они не столь значительны по сравнению с газоразрядными приборами. Прежде всего, варисторы обладают довольно большими шумами на низкой частоте, а также меняют свои параметры со временем и от воздействия температуры.
Стоит заметить, что среди защитных компонентов кроме варистора существует ещё один электронный компонент — супрессор. Это так называемый защитный диод или трансил. По своим функциям (но не устройству!) он чем-то похож на варистор, но обладает большим быстродействием и, как правило, используется в низковольтных цепях.
Кроме маломощных варисторов, которые применяются для защиты бытовой аппаратуры, промышленность выпускает очень мощные варисторы на большие напряжения и токи. Они используются на трансформаторных подстанциях и всегда включаются в системы грозозащиты.
При установке варисторов в самодельные конструкции следует иметь в виду, что иногда, при возникновении критических условий варисторы могут «взрываться» и чтобы предохранить монтаж и другие радиоэлектронные компоненты от последствий такого «взрыва» их стараются помещать в защитные экраны. Если сравнивать варисторы из карбида кремния и оксида цинка то, по мнению специалистов, вторые предпочтительнее.