Что такое децибел? | На литых дисках

Что такое децибел?

Что такое децибел?

Перевод из децибел в разы и обратно

Что такое децибел? Довольно часто в популярной радиотехнической литературе, в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость, индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить. Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи.

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Что такое децибел?

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе.



График логарифмической зависимости

Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера. Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.



График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора, который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.



Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения. Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ. Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ, то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10(n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10(1дБ / 10) = 1,258925…= 1,26 раза.

Аналогично,

  • при 20 дБ: 10(20дБ / 10) = 100 (увеличение величины в 100 раз)

  • при 10 дБ: 10(10дБ / 10) = 10 (увеличение в 10 раз)

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

  • при -10 дБ: 10(-10дБ / 10) = 0,1

    Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

  • при -20 дБ: 10(-20дБ / 10) = 0,01

    Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без "разов", как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком "-".

Переход от разов к децибелам можно осуществить по следующей формуле:

  • n = 10 * log10(m) ,где n – значение в децибелах, m – отношение в разах.

  • Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

  • 10 * log10(4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

  • Для перехода к децибелам: n = 20 * log10(m)

  • Для перехода от децибел к разам: m = 10(n / 20)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!