Схемотехника блоков питания персональных компьютеров. Часть 3. | На литых дисках

Схемотехника блоков питания персональных компьютеров. Часть 3.

Схемотехника блоков питания персональных компьютеров. Часть 3.

Узел управления

Первые две статьи цикла "Схемотехника блоков питания персональных компьютеров":

  • Часть 1. Принцип работы импульсного блока питания. Сетевой выпрямитель и фильтр;
  • Часть 2. Высокочастотный преобразователь (инвертор).
Узел управления импульсного блока питания выполняет много важных функций.

  • Во-первых, формирование прямоугольных импульсов с их последующим усилением для управления мощными транзисторами высокочастотного преобразователя.

  • Во-вторых, стабилизация выходных напряжений.

"Сердцем" узела управления является ШИМ-контроллер TL494CN. Аналогами этой микросхемы являются DBL494, KIA494AP, KA7500, MB3759, IR3MO2 и наша отечественная КР1114ЕУ4.



Узел управления состоит из, собственно, микросхемы с небольшим количеством дискретных элементов и промежуточного каскада, задачей которого, является усиление импульсов сформированных микроконтроллером до величины достаточной для управления мощными транзисторами высокочастотного преобразователя. Далее на рисунке показана внутренняя структура микросхемы TL494CN.



В состав микросхемы входит задающий генератор пилообразного напряжения G1. Элементы C3 и R8 задают частоту следования импульсов. Затем импульсы поступают на инвертирующие входы схем сравнения (компараторов) А3 и А4.

Выходы компараторов объединяются на логический элемент 2ИЛИ (D1), то есть импульс на выходе элемента появится при наличии импульса на любом из входов. Далее импульсы поступают на счётный вход (С) триггера D2. Каждый приходящий импульс изменяет состояние триггера на противоположное. Далее через логический элемент 2И (D3, D4) импульсы приходят на логический элемент 2ИЛИ-НЕ (D5, D6). Благодаря конфигурации схемы импульсы появляются поочерёдно на выходах элементов D5 и D6, а, следовательно, и на базах транзисторов V3 и V4, что и требуется для работы двухтактной схемы.

Если высокочастотный преобразователь выполнен по однотактной схеме, то 13 вывод микросхемы соединяют с корпусом и импульсы на выходах D5 и D6 появляются одновременно.

Схема сравнения А1 представляет собой формирователь-усилитель сигнала ошибки в схеме стабилизации выходного напряжения. +5V через делитель из резисторов R1,R2 поступает на один из входов. На другой вход (вывод 2) через регулируемый делитель подаётся эталонное напряжение, которое вырабатывает встроенный в микросхему стабилизатор А5.

Выходное напряжение А1 пропорционально разности входных напряжений. Оно задаёт порог срабатывания компаратора А4, то есть скважность импульсов на его выходе. Величина выходного напряжения вторичных источников питания зависит от скважности импульсов. В результате получается замкнутая в кольцо система автоматического сравнения и регулирования выходного напряжения. Компаратор А3 предназначен для формирования паузы между импульсами на выходе элемента 2ИЛИ (D1).

Минимальный порог срабатывания компаратора А3 задан источником напряжения GV1. Если напряжение на выводе 4 микросхемы растёт, длительность паузы так же увеличивается, а максимальное выходное напряжение источника питания уменьшается. Поскольку амплитуда импульсов на входах всех выпрямителей изменяется одинаково, стабилизация с помощью широтно-импульсной модуляции любого из выходных напряжений, стабилизирует и все остальные. В данном случае стабилизируемым напряжением является +5V.

Следует отметить, что определение и точная локализация неисправности ШИМ-контроллера, это самая сложная процедура при ремонте импульсного блока питания своими силами. Для этого необходим лабораторный источник питания и главное двухлучевой или двухканальный осциллограф. И если после проверки всех элементов блока питания, что в принципе не сложно, блок всё же «плывёт», то лучше заменить микросхему TL494CN на заведомо исправную, тем более что стоимость её весьма невысока.

НазадДалее